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ABSTRACT TITLE 

Non-Cooperative Target Recognition by radar represents a substantial challenge to signal and image 
processing. In these lectures we consider two specific approaches to the problem. In the first we consider 
the additional information that may be exploited by observing a target from more than one perspective. It 
is shown that this can lead to a substantial increase in classification performance, though it is important 
that the additional perspectives are correctly chosen. In the second we consider sensor systems in nature 
which have benefitted from optimisation through millions of years of evolution. In particular, we show 
that echolocating bats use sophisticated waveforms and adaptive processing in the pursuit of their prey. 
Finally, we include some recent results on discrimination of human targets in terms of their acoustic 
micro-Doppler signatures. 

1.0 INTRODUCTION 

The ability to detect and locate targets on a 24 hour basis, over wide areas, regardless of weather 
conditions has long made radar a key sensor in many military and civilian radar applications.  It is well 
recognised that the utility of the information supplied by a radar system would be hugely enhanced if 
targets could additionally be classified.  This might be by type (e.g. to differentiate helicopters from 
civilian airliners from military jets) or even better, within type (e.g. a Chieftain tank from a T32 tank).  It 
would be even more advantageous if this could be automated, at least partially.  Huge quantities of 
imagery are produced by SAR and place unrealistic demands on a human image interpreter.  Thus 
algorithmic aids are necessary if the data is ever to be fully exploited.  However, this has proved far from 
straightforward and robust, and reliable classifiers able to cope with wide target and clutter sets do not 
exist.  Most of the approaches to classification have concentrated on exploiting higher and higher spatial 
resolutions both in one [Ron97] and two [Nov97] dimensions. There has also been research examining the 
role of polarimetric information [Nov97] [Sad02].  However, there has been little examining the utility of 
angular diversity for improved classification performance [Shi05] [Xue02] [Run99] although it is clear 
that (i) there must be additional information in multiple perspectives and (ii) it is extremely easy for 
existing systems to acquire such data. In fact, to date, the variation of target signature with angle has been 
a source of performance degradation in single perspective classifications approaches. Alternatively, multi-
perspective classification can be exploited by networks of co-operating radar systems [Bak03].  These 
have the added advantages of improved system sensitivity, tailored coverage and reduced vulnerability to 
electronic and physical attack.  

There are no rigorous and universally accepted definitions for the terms ‘classification’ and ‘recognition’. 
In this lecture these terms are used interchangeably to address the ability of the radar system and 
subsequent processing to determine the class to which a target belongs (after defining a set of sub-
populations such as a particular version of a tank). To perform Automatic Target Recognition (ATR) in a 
useful manner it is necessary to achieve a sufficiently high degree of confidence that a target has been 
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correctly classified and hence it is extremely important to minimise the probability of misclassification. 
This is because in both military and civilian applications there are likely to be safety issues that demand 
high level of performance and a full understanding of its limits, variability and robustness.  

ATR can be based either on 1-D signatures, i.e. features derived from a range profile of the target, or on  
2-D imagery. 1-D signatures are often employed due to their simplicity in terms of implementation and 
signal processing, although they can lead to performance that is prone to low classification rates due to the 
likely inclusion of a clutter components which are scenario dependent. 2-D imagery is less likely to 
contain clutter (although there will still be a significant multipath or forward component) and hence would 
seem to guarantee a more detailed and authentic (but nevertheless still corrupted) representation of the 
target backscattering [Nov91]. This requires more sophisticated signal processing and, if the data is 
collected over an extended period of time (as in a frequency stepped radar system), corrections for 
irregular target movements. Such corrections can be far from straightforward especially because the 
detailed form of the motion corruption is commonly unknown. 

When High Range Resolution Profiles (HRRPs) are used, slightly different target orientations due to 
rotational or translational motion of the target (assuming no range migration occurs) result in differences 
in relative range between scatterers which lead to interferences and bin fluctuations in the range profile. 
This is known as speckle. In addition to this, HRRPs collected at different aspect angle are likely to 
present differences due to shadowing; this occurs when one or more scatterers are occluded by other parts 
of the target (local shadowing) or by other targets (global shadowing) and therefore not illuminated by the 
incident waveform. As a consequence, a portion of the target is unavoidably masked and the signature 
further corrupted. These effects may result in a loss of information and may negatively affect classification 
performance .The employment of multiple perspectives is a way to overcome some of these effects and to 
exploit the additional information that is aspect dependent. 

Here, the problem of radar target classification is examined for the case when more than one perspective 
or viewing angle of the target is available to the sensor. Using full-scale target signature measurements as 
the source data, it is shown how, multiple perspectives enhance classification performance. Classification 
performance is assessed both as a function of the number of perspectives and of the Signal-to-Noise Ratio 
(SNR). In particular we present three approaches to high range resolution profile multi-perspective 
classification to removes any possible bias that could be introduced by a single individual classifier.  

We then look at the natural world to investigate what lessons may be learned from understanding how 
echolocating bats detect and select prey during foraging. A real feeding buzz (the sequence of pulses 
emitted by the bat) is analysed to show how waveform diversity is used to achieve a high degree of 
detection and classification performance. Details on how bats classify moving and static targets, such as 
insects or flowers of bat-pollinated plants are also given, with some recent results.   

Although micro-Doppler target classification is the subject of another lecture we present some latest 
results on human recognition and motion classification by acoustic micro-Doppler signatures. 

 

2.0 MULTI-ASPECT NCTR 

In this section multi perspective target classification is exploited on a database consisting of HRRPs of 
real radar targets. Performance is assessed under the assumption that targets are already detected and 
tracked by the illuminating radar system and that the reflection signature to be recognised is a 1-D HRRP. 
The complete database used is collected at all angles (i.e. over 360°) with the radar system stationary and 
receiving the echoes from a target mounted on a rotating platform. During the period of collection and 
processing, a number of factors affect the range profiles causing variability. although the orientation of the 
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target and system parameters remain the same. These factors include measurement noise, together with 
rotational and translational range migration. Other possible causes that might affect radar measurements 
are clutter, jamming (signals transmitted in order to deliberately confuse the system attempting to detect 
it), and Electro-Magnetic Interference (EMI) caused, for example, by other communications or radar 
systems close to the radar. In this work we have attempted to minimise the effects of noise clutter, forward 
scatter and external interference. Although this is not wholly realistic, the purpose of the research is to 
determine whether or not multiple viewing perspectives improve classification performance, i.e. there is 
an in-built assumption that any improvement observed will also be apparent for targets in natural 
environments. However, due to the additional variability that will occur, this assumption will require 
careful testing and verification. 

The time domain backscattering properties of radar targets can be used to form feature vectors for 
subsequent classification. These backscattering properties can take the form of either HRRPs or inverse 
synthetic aperture radar (ISAR) imagery. Both are well known methods of expressing the backscatter from 
a radar target [Weh95]. HRR data of full-scale real vehicle targets from the Thales airborne data 
acquisition system (ADAS) has been used as the signature set to examine M-P target classification. The 
data collection geometry is depicted in Figure 1. Two stationary trihedral targets are located in front and 
behind a turntable, and provide a means for computation of the radar point spread function. For collection 
of the signatures for classification the two rotating corner reflectors are replaced by vehicles. In the figure 
two moving reflectors are located on opposite sides of the rotating turntable. During the 360° target 
rotation, HRR profiles are collected at an angular interval of 2 min of arc. High range resolution is 
achieved by transmitting a linear frequency-modulated (LFM chirp) pulsed waveform [Sul04]. On 
reception pulse compression is utilised to generate an HRRP. For example for a pulse duration , the 
chirp waveform is given by 
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Therefore, the bandwidth is ptB γ= . The pulse compression ratio (PCR) is equal to the time-bandwidth 

product and represents the range compression factor (i.e. the ratio of the pulse length before time 
compression to its length after compression). The PCR is a gauge of the range resolution improvement 
given by pulse modulation. The ADAS data chirp parameters are shown in 
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Table 1. These enable HRRPs 
with a range resolution of just over 30 cm after weighting. The format of the data is such that a series of 
pulses can be collected where the bandwidth of each pulse is stepped by half the bandwidth of any of the 
individual pulses. These can be combined to provide a very high range resolution signature with a 
resolution of 6 cm. However, here we limit investigations of M-P classification performance to the 30 cm 
range profiles only. Figure 2 shows an example of the form of the radar data. It depicts the intensity 
modulated time history of HRRPs from the two stationary and the two rotating trihedral reflectors for the 
geometry depicted in Figure 1. The two stationary trihedrals show a constant response at near and far 
range as expected. For the two rotating trihedral targets, when the line-of-sight is on the trihedral bisector, 
a peak of reflection occurs. This is consistent with the expected theoretical response [Kno85]. As the 
trihedral targets rotate, the backscattered field decreases progressively until a point is reached where there 
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is a peak of specular reflection. This is a reflection from one of the sides making up the trihedral which is 
orthogonal to the illuminating radar system (i.e. it faces the radar beam and looks like a flat plate 
reflector). At increasing rotation angles the RCS of the target drops because the orientation of the trihedral 
is such that it tends to reflect incident radiation away from the radar. This angular dependency of the RCS 
of a known reflector, such as a trihedral, begins to illustrate how the backscattering properties of real 
targets may vary with the orientation of observation. For example, if a target has part of its structure that 
mimics a trihedral it will only show this feature over a limited angular range. Thus in an M-P 
environment, different angular samples of a target signature should improve the likelihood of observing a 
corner or corner-like reflector. Such shapes are common on many man-made structures and are often quite 
dominant features that may prove useful for classification. In Figure 3, the complete angular ambit of 
range profiles spanning 360° from a Land Rover vehicle rotating on the turntable is shown. This highlights 
a number of different scattering behaviours: the strong peaks from specular reflections (0°, 90°, 180°, . . .) 
appear over a very limited angle range and obscure nearby point like backscattering. Corner-like returns 
can be observed at a far range (6 m) for two range angular spans ([10°– 60°] and [130°–180°]). These 
returns correspond to the trihedral-like structures formed at the rear of the Land Rover. This is a vehicle 
without the rear soft top and has a metallic bench seat that makes a corner where it joins the rear bulkhead 
of the driver’s cabin. At 8 m range there is a double bounce return corresponding to one of the corners. 
This type of effect increases the information that can be extracted which would be otherwise impossible to 
reconstruct by a traditional single-perspective approach. Classification has been performed on a 
subpopulation consisting of a total of three ground vehicles (A, B, and C) exploiting multiple perspectives 
of HRRPs from each of the vehicles. For each target, there are 10 500 profiles spanning 360°. The data are 
divided into contiguous 10° sections, and 36 signatures randomly selected from each of the 10° sectors are 
given to the classifier to build the internal representation of the class. These signatures are then removed 
completely from the data set. The remaining profiles then provide the input to the classifiers. 

2.1 Data pre-processing 
After pulse compression and weighting, the signal is Fourier transformed to form the total range profile. 
Subsequently, the HRR profile is cut out of the illuminated area preserving 52 range bins, each with a 
sampled resolution of 30 cm, and an actual resolution of approximately 39 cm (because of the window 
applied). However, the data exhibit a low-level contribution from zero Doppler clutter (ZDC). ZDC is 
stationary or quasi-stationary clutter that contributes to the HRRPs. By observing a sequence of range 
profiles it becomes clear how the ZDC affects the classification process. Grass and trees show a relatively 
fast fluctuating term whose effect at DC can be observed over relatively small turntable rotation angles. 
This is in contrast to the more persistent response given by spatially more restricted scatterers such as 
static ground discontinuities and mounds of gravel. This also means that the ZDC can be quite different 
from one target measurement to another because as the vehicle approaches the turntable it modifies the 
local clutter structure and hence the ZDC component of the return in the signature. As a consequence, if 
ATR is implemented using the same data for both training and testing the classifier, the overall accuracy 
could be significantly upset by the ZDC contribution to backscattering, as the classifier would otherwise 
use the clutter as an input. Thus the ZDC has been estimated and subtracted. This has been performed 
using data derived in the frequency domain following the method outlined in [Sho98]. The mean value of 
ZDC over about 50° of turntable rotation is subtracted from those frequency signatures, and then the final 
HRRP is extracted. After ZDC subtraction, a mean filter over a neighbourhood of three echoes is applied 
to a sequence of range profiles. Since two consecutive HRRPs are spaced by only 2° of target rotation the 
non-coherent averaging partially averages out those phenomena that are independent of the geometry. In 
addition, the signal to noise ratio (SNR) is increased as demonstrated in [Sko80] by a factor N  where 

 is the number of target echoes. Prior to non-coherent averaging, it is usually necessary to align the 
range profiles. However, here, because the input patterns for recognition are collected from the turntable 
measurements, no additional alignment is needed between training and test profiles. Finally, the signatures 
are normalised following [Zyw96] to make the target area in the HRRP more prominent. A target mask is 

N
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generated to select the target only as part of the range profile by measuring the noise mean value μ  and 
standard deviationσ . A threshold σμ 3+  is applied to eliminate the non-target zone. The target masks 
are used so that target-only data is presented to the classifier. 

2.2 Feature extraction 
In a typical pattern recognition problem it is often necessary to reduce the data dimension of the input of 
the classifier. This is mainly because of an intrinsic degree of redundancy within the data where there are 
regions where no information is contained. It also helps to reduce the very high quantities of data that 
otherwise have to be processed. Thus we may consider range profiles as providers of feature vectors that 
are to be separated. After focusing on those range resolution cells whose intensities depict the target 
backscattering, the number of elements representing the backscatter can be reduced with an information 
loss which is assumed negligible. Furthermore, dimensional reduction of this type also attempts to 
emphasise the differences between patterns and hence enhance classification performance. The PCA 
[Theo] is a statistical method that enables the data to be represented in a different vector basis such that it 
is possible to remove similarities (which therefore do not contribute to the classification process). After 
subtracting the mean  f  from each of the vectors of the training set F and producing a zero-mean set of 
data, the covariance matrix Cov  can be formed 
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After calculating the Eigenvectors of , the P-most significant eigenvectors with the largest 
Eigenvalues are selected and form a new basis vector 
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vectors can then be transformed as follows  
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The number of principal components PC = P  is chosen as a function of the classification rate achieved. 
This usually becomes stable once the PCs necessary to fully describe the data have been selected. After 
testing the classifiers, their mean value correct classification rates (CCRs) are plotted against the number 
of principal components representing the feature vectors. For the data used here the dimension of the 
feature vector is 52. However, as can be seen in Figure 4, the probability of correct classification  is 
almost unaltered until less than approximately 12 components. At this point they are no longer 
representative of the different target classes. Therefore, in order to depict the target with more robustness, 
the feature vectors used in the following sections are obtained using the first 21 principal components. 

ccP

2.3 Multi-perspective classifiers 
In order to remove any bias introduced by a single algorithm three classifiers have been implemented. 
These are: (1) a naive Bayesian classifier, (2) a nearest neighbour classifier and (3) a neural network 
classifier. All three are described in detail in [Ves07]. A traditional single-perspective classifier, after 
training the ATR algorithm with a set of templates, is tested with profiles collected from all orientations of 
the target. In an N-perspective scenario, the parameter that distinguishes the perspective topology is the 
vector { }Njji ,...,1, =Δ=Φ i,:ϕ  where the element jiji ϕϕϕ −=Δ , represents the angular displacement 
between the node i  and j . For example in a two-perspective (2-P) scenario, the parameter that 
distinguishes the perspective node locations is their relative angular displacement 122,1 ϕϕϕ −=Δ . Hence, 

after fixing 2,1ϕΔ , the 2-P classifier is tested with all possible pairs of HRR profiles displaced by that angle 
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covering all the possible orientations of the target. Having a test set consisting of  profiles, the same 
number of pairs can be formed to test the 2-P classifier. As shown in 

N
Figure 5, to test the Multi Perspective 

(M-P) classifier, the sequence of all the possible pairs of HRR profiles displaced by 2,1ϕΔ is given as an 
input, and the accuracy for a 2-P classifier is subsequently computed. Thus to evaluate the 3-P recognition 
performance, after choosing the set { }3,12,1 , ϕϕ ΔΔ=Φ , the classification accuracy is measured as the 
average correct classification over all the possible HRR profiles triples that could be formed from the M-P 
topology . This procedure is extended for networks having four and five perspectives. The training set 
of representative vectors for each class is made up of 36 range profiles, taken approximately for every 10° 
of target rotation. The ‘testing set’ of each class consists of the remaining range profiles neglecting the 
templates. The angular displacement between nodes is not processed as information by the M-P classifier. 
Although this is only one of the possible approaches to M-P classification it is simple to implement. 
Furthermore, the computational burden is reduced to a minimum. Although the target has already been 
assumed to have been detected and tracked, the angular displacements F of the nodes are unknown to the 
network. Therefore, in case of a single sensor collecting multiple perspectives from a moving target, it is 
assumed that to combine the signatures, it is not necessary to estimate the motion parameters and the 
centre of rotation of the target. Here, we consider a network of radars consisting of  nodes, each single 
perspective 

Φ

N
j  of the target is represented by the HRR profile . Consequently, the set of signatures 

collected by the network is represented by 
jX

{ }NjX j ,..,1: =  and is directly related to the vector of angular 

node displacements Φ . To test classification performance, the signatures { }NjX j : ,..,1=  correspond to 
the HRRPs after applying PCA.  

2.4 Multi-perspective classification performance 
Classification performance is evaluated in a forced decision environment using confusion matrices (e.g. 
see [Tait]) where each column represents the instances in a predicted class, whereas the rows represent the 
output distribution for an actual class. In Table 2, the confusion matrices of the three classifiers are shown 
with respect to the number of perspectives involved in the decision processing. The single-perspective 
results represent the more usual single perspective classifier performance. It should be noted that even 
with a single perspective the classification performance is very good. This is a function of using turntable 
data together with a small number of sub-populations. However, it does allow the trends with a number of 
perspectives to be explored. Table 2 clearly shows an improvement in classification performance, as the 
number of perspectives is increased. This trend is observed for all three classifiers and hence we can 
conclude that it is not a function of the classification process but because of the additional perspectives. 
Interestingly, the biggest increase in performance occurs when just one additional perspective is 
employed. A parameter to measure the goodness of a classifier is the CCR (i.e. the Probability of Correct 
Classification PCC on a finite test dataset). It is the mean value of the elements on the diagonal of the 
confusion matrix. In Table 3, the CCR of the three implemented classifiers are displayed using different 
numbers of perspectives. Again all three show the same trend of improvement in performance as the 
number of perspectives is increased. Figure 6 shows this graphically and again highlights that the increase 
in classification performance is independent of the particular classifier approach used. Furthermore, it 
emphasises that the M-P improvements are not linear with the number of perspectives involved. On 
average an 8.8% improvement in the correct classification rate, with respect to the single perspective 
classifier, is reached when two perspectives are used, whereas the benefit in relation to the 2-P classifier is 
3.6% when three perspectives are used. It is 2.51% when going from three to four perspectives and finally 
1.5% when going from four to five perspectives. This is a consequence of those signatures that relate to 
particular target orientations where specular reflections occur and the profile is thus dominated by only a 
very few scattering centres. These patterns are common to all the target classes and consequently are more 
easily misclassified. Nevertheless, for these target orientations, the decision confidence of the classifier is 
low and is therefore significantly aided by a second perspective. On the other hand, if both the first and 
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second perspectives correspond to those with reduced information signatures, a third perspective is less 
effective in improving performance. A third perspective has less influence to correct the weights of the 
others and thus the improvement from subsequent perspectives is progressively attenuated. This trend may 
be different if the perspective displacement of the nodes of the network is processed by the classifier as 
useful information. Nonetheless, the nonlinear relationship between CCR and number of radar 
perspectives suggests that only the employment of a small number of nodes in the network is necessary in 
order to achieve the best trade-off between system complexity and improvement in classification 
performance. 

The benefits of using multiple perspectives to improve classification performance are now examined as a 
function of different SNR levels. The SNR of the data is measured as the distance in dB from the 
maximum magnitude in the HRR profile belonging to a particular target and the noise level after ZDC. 
From each target class ‘i’, the noise level is measured in the non-target area before target normalisation. 
The target signal level is estimated as the mean value of the maximum target backscattering over the 360° 
range profile history and the  iclassSNR −
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where nμ  is the mean noise intensity for the th, -dimensional profile n k ),...,,( ,2,1, Knnnn rrrRP = , and  
is the number of profiles collected for the ith target class. The result of applying this procedure to the 
original data leads to an 

N

∑ == −iclass dBnSNR 4.28/1(
i

c ) SNR . The profiles are subsequently 

progressively corrupted with different levels of Gaussian noise applied to the I and  channels, before 
matched filtering. Then, the SNR is measured as above, and classification attempted on PCs extracted 
from the 1D signatures. The original training dataset is preserved. As there was no bias introduced by any 
of the three classifiers only the FANNs classifier is used to examine performance as a function of SNR. In 

Q

Figure 7, the CCR results for just the FANNs classifier are depicted against the number of perspectives 
used and the SNR levels. In all cases increasing the number of perspectives improves classification 
performance. In comparison to a single-perspective classifier, the CCRs remain stable above a SNR 
threshold of 17 dB and then a very rapid deterioration of the classification performance can be observed. 
This is because of the information loss caused by the increasing noise that corrupts the range profile. The 
relatively high SNRs at which this occurs can be partly explained by the fact that this is a combination of 
smaller magnitude and larger magnitude scatterers that provide the classification information. The smaller 
magnitude scatterers are more severely affected by the increasing noise and hence quickly have an impact 
on reducing performance. As the number of network nodes increases, the information is partially 
recovered with the help of other perspectives because the noise is not correlated and hence modifies the 
profiles differently. This result does highlight the importance of having adequate SNR such that small 
magnitude scatterers are preserved as an input to the classification process. 

2.3 Summary 
A novel radar target classification approach has been introduced. The method is based on the processing of 
real, full-scale target signatures collected at different perspectives in a network of monostatic radars. In a 
first single perspective stage, depending on the methodology adopted, the 1D imageries are processed in 
parallel, providing the following M-P stage with partial outputs eventually used for the final decision. The 
benefits of the M-P classifier implementation have been analysed and show a nonlinear but very clear 
CCR improvement with the number of perspectives. As the number of radar nodes increases, the M-P 
CCR stabilises, suggesting that most benefit accrues when using a small network of only two or three 
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nodes and hence avoids any significant increase of system implementation complexity. For example, this 
enables a simple approach to be adopted for a single monostatic radar that obtains multiple perspectives as 
it traverses an object or area of interest (provided sufficient angular diversity is obtained). The 
performance has also been investigated as a function of different noise levels. The incidence of multiple 
perspectives on correct classification performance improvement is observable for any value of the SNR 
range of values examined. In addition, the M-P benefits are more pronounced for low SNR levels that are 
for those SNR values that are typical of not controlled real-world experiments. Further research is required 
to investigate the effects of the separation of perspectives used to evaluate any relationship between angles 
of perspectives selected and the resulting classification performance. This is particularly important if 
single monostatic radar systems are to be used as it could minimize the time at which targets are 
illuminated. 

3.0 BIOLOGICALLY-INSPIRED NCTR 

In the natural world, echolocating mammals use waveform diversity as an inherent component of their 
normal behaviour. The constantly changing time and frequency structure, and location and direction of 
their transmitted signals represent a pro-active approach to interrogation of the surrounding environment. 
In addition, a multiplicity of processing streams collectively extracts information from received echoes to 
build up an accurate picture that is supplemented by long term ‘experiential’ memory. In this way bats, 
whales and dolphins are able to ‘perceive’ their environment, albeit in a very different form to humans, 
such that bats can autonomously navigate, feed, socialize and otherwise conduct their lives. Here we 
examine the use of diversity in natural sensing systems with a view to exploitation in synthetic sensors, 
with particular emphasis to target classification. 

3.1 Waveform design 
Echolocating mammals such as bats, whales and dolphins have been using waveform diversity for over 50 
million years. In contrast, synthetic systems such as sonar and radar have been in existence for less than 
100 years. Echolocating mammals vary parameters including the Pulse Repetition Frequency (PRF), 
power and frequency content of their transmitted waveforms. Recent developments in technology mean 
that it is now possible to replicate such diversity in radar and sonar systems – so that with modern digital 
technology high-precision wide-bandwidth waveforms can be generated and varied potentially on a pulse-
to-pulse basis,. Thus echolocating mammals potentially offer valuable insights that may enable 
capabilities such as autonomous navigation and automatic target classification which have hitherto proved 
elusive. If we understand how bats exploit echolocation for autonomous navigation, collision avoidance 
and recognition, we can build this into synthetic systems. Potentially, this can provide a step function 
change in the utility of unmanned systems that can take advantage of the attributes of radar and sonar. 
Signal designs utilised by bats have been categorised by Jones and Teeling. The categorisation is based 
around signals emitted when bats are searching for prey: intra-specific (and indeed intra-individual) 
variation in call design can be substantial, and the scheme was introduced to illustrate patterns of 
convergent evolution. The following eight signal design categories may be summarised as follows: 

• Most Old World fruit bats (Pteropodidae) do not use echolocation for orientation, and instead 
appear to rely largely on vision 

• Brief, broadband tongue clicks: the clicks are produced in pairs (one from each lip) by raising the 
tongue from the floor of the mouth. The clicks are of short duration (typically < 1 ms) and the 
mechanism of their production is quite different from that used in laryngeal echolocation by all 
other echolocating bats. 
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• Narrowband signals dominated by the fundamental harmonic: these calls have narrow bandwidths, 
and are relatively long (often > 5 ms). 

• Narrowband multiharmonic signals: Each harmonic is narrowband, but several prominent 
harmonics feature in the call. The dominant harmonic is usually not the fundamental. 

• Short, broadband calls with a dominant fundamental harmonic. These calls are the typical ‘chirps’, 
or frequency-modulated (FM) calls that have dominated research on broadband echolocation. 

• Short, broadband multiharmonic signals 

• Long duration multiharmonic broadband calls: most energy is in the second harmonic. 

• Pure constant frequency (CF) signals are long duration signals whose dominant component has 
zero bandwidth and duration can be long (> 30 ms) 

Call design varies within species and even within individual bats. In the next section we see that bat calls 
may change radically during insect capture. Prey in the air are searched for, detected and located by a 
series of echolocation pulses that ultimately ends in a ‘terminal buzz’. During a terminal buzz, calls 
typically become shorter, are repeated at a higher rate, and have shorter intervals between them. In most 
bats, pulse-echo overlap is usually avoided during prey capture (because the calls become shorter as the 
prey is approached). The factors which determine the nature of the waveform are: intensity, harmonic 
structure, frequency, bandwidth, duration, repetition time and duty cycle. 

3.2 Analysis of a feeding buzz 
A real ‘feeding buzz’ is examined to highlight how a bat constantly exploits diversity in order to intercept 
and feed on prey. A typical situation is shown in Figure 8 in which the blue line traces the trajectory of a 
bat until it intercepts its prey (shown by the red dot). The black circles show the position at which a call 
(or waveform) was emitted.  

A number of simple observations may be made: 

1. The trajectory undergoes a significant and non-linear manoeuvre. This may be thought of as an 
example of spatial diversity where the bat is gathering improved information by taking multiple 
and different perspectives of the environment and target. The significance of spatial diversity is 
not clear but improved information will be gleaned by exploitation of multiple perspectives 

2. Calls or waveforms are not transmitted at a constant PRF. This might be thought of as sampling or 
time diversity. Again the logic and physical explanation of this is unclear. It is known that the bat 
expends significant energy in making a call. Therefore it is likely that the number and frequency 
will be kept to a necessary minimum. Coherent processing of the type typically employed in radar 
will be different in bats. 

3. There are two very distinctive PRF regimes, the first being relatively low and the second in the 
final intercept phase being much higher. Clearly, the need for acquiring information at a higher 
rate is necessary as the bat approaches the target. The precise nature of this information is again 
unclear but could be associated with the need for fine spatial positioning of the target to enable an 
effective intercept. 

Figure 9 plots the feeding buzz sequence emitted by an Epetesicus nilssoni bat while first searching and 
then attacking a slow moving target. During data collection the bat was constantly changing its orientation, 
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such that it viewed the target over a total angle range of approximately 270 degrees, and gradually getting 
closer and closer to the target. 

It is evident that the buzz sequence can be divided into two main phases. The first phase, typically called 
the searching phase, corresponds to the initial part of the buzz in which it is believed the bat is looking for 
a possible target and performing classification. Ideally, this phase should include the task of target 
detection although, for this particular experiment, not enough information on the experiment is available 
to decide whether the bat had already detected the target or not before the recording started. This phase is 
composed of echolocation calls characterised by amplitudes of about 0.3 V which are separated in time 
from each other by a PRI (Pulse Repetition Interval) of about 0.2 sec. The second phase, called the 
terminal phase, is the last part of the buzz and corresponds to the time when the bat attacks the prey that it 
has selected. Pulses belonging to this phase of the buzz are separated by a much lower PRI (about 1 msec) 
and present amplitudes up to 5-6 times lower than those recorded in the searching phase. It is believed this 
is because in the terminal phase the bat is closer to the target and therefore can operate with lower power 
transmissions in order to save precious energy that can instead be used to transmit with a higher PRF to 
keep tracking the target before the final attack.  

Figure 10 shows the spectrogram, the normalised mean spectrum and the ambiguity function with range 
and Doppler cuts for the first pulse in the searching phase. The pulse is characterised by a time duration of 
about 9 msec and it is composed of three non-overlapping harmonics (in frequency) with peaks in power 
at about 30 kHz, 60 kHz and 90 kHz, respectively. Most of the energy is concentrated in the fundamental 
harmonic which can be fitted well to a hyperbolic function. The mean spectrum clearly shows the three 
non-overlapping harmonics which present a non-constant power/unit bandwidth that is typical of non-
linearly modulated chirps. The range cut of the ambiguity function shows that the bat is operating with a 
range resolution of about 1.8 cm. The Doppler cut instead present a very narrow peak indicating that the 
bat is trying to acquire fine Doppler information on the target. This is in very good agreement with the 
previous literature showing that Doppler information is critical for the task of classification and support 
the hypothesis that target classification takes place in the searching phase.   

Figure 11 gives the same plots for a pulse in the final phase that is composed of two overlapping (in 
frequency) harmonics. The fundamental harmonic is well fitted to a linear chirp that spans frequencies 
between 75 kHz and 25 kHz, while the second harmonic decreases from about 90 kHz to 55 kHz. The 
pulse length is reduced to 4 msec, more than 50% with respect to the pulses described above, in order to 
conserve energy and avoid eclipsing. At the same time the degree of hyperbolic curvature increases to 
extend the bandwidth and improve range resolution.  

As expected, the range cut of the ambiguity function is now much narrower that the one associated with 
the pulse extracted from the searching phase, and shows that the bat now operates with a range resolution 
of about 8 mm. The Doppler cut instead has become much larger providing a poorer Doppler resolution. 
Overall, it is common to waveforms in the terminal phase to provide tolerance to any differential Doppler. 
This is likely to indicate that the bat at this stage has already gained the Doppler information for 
classification and is gathering the range information before the final attack. Unfortunately, there is no 
direct knowledge of how the bat was changing its position and orientation with respect to the target during 
this specific recording.  

It is clear that diversity, even at this relatively coarse level of detail, is being utilized and utilized every 
time sensing takes place. Whilst we can speculate about the reasons why the bat operates in this way it is 
probably safe to say that it is done for good reason as is the habit of ‘Mother Nature’. Indeed, the success 
and rate at which bats are able to take insects on the wing is testament to the effectiveness of diversity 
exploitation. This seems a powerful indicator that by understanding how and why natural systems use 
diversity we can create a much more able capability in synthetic sensing systems than currently seems 
possible. The more demanding question that remains to be addressed is what are the appropriate 
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adjustments that need to be made to maximise classification performance, and this would be an interesting 
and challenging topic for future research. 

3.3 Classification of insects 
Classification in bat echolocation is defined as the use of patterns of information in echoes to categorize 
targets [Sch03]. Classification of insects by bats that emit continuous frequency (CF) signals has been at 
the centre of various research work.  

Figure 12 shows an example of a CF waveform that is composed of three main harmonics at about 30 
kHz, 60 kHz and 120 kHz that are initiated and terminated by frequency modulated sweeps. It has been 
argued that the portions at the beginning and end of the waveform function in target localization, while the 
long constant frequency component eases the detection and the classification of targets [Tian97]. Indeed, 
this type of waveform is not being used by any radar system and the fact that mammals perform amazingly 
by using it makes worth exploiting the impact that its use would have on radar target classification. 

In flight most species of CF bats, such as horseshoe bats, lower their call frequency in relation to their 
flight speed in order to compensate for Doppler shifts induced by their own movement so that echoes 
always return at a best suited frequency for the hearing of the bats [Schu79]. Bats that emit CF signals can 
detect and classify fluttering insects from amplitude and frequency modulations of the echoes caused by 
the movement of the insect's wing [Ost84] [Emde86]. These modulations, called 'acoustical glints', 
potentially provide information about the wing beat rate and flight angle, and are very specific for each 
species of insect. Glints turn out to be useful not only for the detection of the prey but also for its 
identification. Amplitude modulations are the result of the fact that echo strength is strongest when the 
insect wings are perpendicular to the sound source and gets weaker as the insect wing moves away from 
the perpendicular position. Interestingly, the precise timing of the glint depends on the angular orientation 
of the insect [Sch83], then amplitude modulations give information about the target elevation that affect 
the timing of the glint production [Kob90].  

Figure 13 shows an example of amplitude modulated echo from a flying moth Autographa gamma at three 
different angles with equidistant starting phase. In the figure the amplitude modulation is given with its 
corresponding wingbeat phase at each time. In the experiment the loudspeaker was placed at the same 
height as the insect. The plot shows that at 90 degrees the glint is produced at the top of the stroke, i.e. 
when the moth wings are perpendicular to the sound source. At 0 degree (frontal) and 180 degrees (rear), 
the glint occurs two phases after the upstroke suggesting that, in both cases, the same part of the wings 
produces the glint [Sch83]. 

The wing movement towards and away from the receiver induces Doppler shifts in the echoes, taking 
information of wing beat movement, that are important signatures for species identification since insect 
wing beat frequency scales with body size [Sot47]. Because the way in which a given insect species 
moves its wings is highly specific, the structure of glints varies across different species and even insects 
with the same wing beat may provide different spectral signature in the echo [Emde90].  

Figure 14 shows the spectrogram of four echoes from four different insects: Deilephila elpenor, Scotia 
exclamationes, Melolontha melolontha and Tipula oleracea. These were flying with the same wing rate 
and were illuminated from 0, 90 and 180 degrees with respect to the sound source. The figure shows that 
spectrograms related to each species present different characteristics, although the fluttering frequency is 
the same. It also shows that for the same insect the property of the spectrogram are also dependent on the 
angle from which the sound source was coming, confirming that spectral cues provide information on 
angular position as well [Kob90] [Sch87]. Finally, the trace of the time oscillation confirms that the same 
considerations are valid in the time domain. Schnitzler showed that at 0 degrees (i.e. frontal view) spectral 
broadenings in echoes due to glints, typically fall below the carrier frequency (i.e. the micro-Doppler 
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signature concentrated below the carrier frequency), while at 180 degrees they show negative and positive 
Doppler shift, and that the width of the broadening is related to the wing beat frequency of the insect 
[Sch87]. Roverud showed that bats that use shorter signals need greater differences in wing beat 
frequencies than bats that emit longer signals, in order to discriminate between different fluttering targets 
[Rov91]. However, behavioural experiment tests show that neither amplitude nor frequency modulations 
alone are sufficient to achieve recognition of insects and that differences in glints from series of echoes 
play an important role in target classification. This highlights the fact that whilst it is clear that bats are 
able to use echo location sources in a comprehensive way, it is not fully understood how they do this. For 
example, von der Emde and Schinitzler showed that greater horseshoe bats are even able to discriminate 
insects of a given species when presented with echoes from the insect illuminated at angles that they had 
not previously experienced [Emde90].  

The way CF bats classify fluttering insects has a very close parallel with the attempt, in radar and sonar 
systems, to classify targets by using micro-Doppler information in the echo spectrogram. A big difference 
though is that bats are able to combine information that derives, at least, from both amplitude modulations 
and frequency modulations and manage to obtain remarkable performance in a very difficult task. Bats, in 
fact, have shown a peculiar ability to distinguish between insects that present the same wing beat rate and 
that have very similar dimension and obtain performance which currently is enormously better than what a 
radar system can do. It is evident that all this might open the way to a new branch of research that not only 
looks at the micro-Doppler signature of a moving target but also at how this movement modulates the 
amplitude of the echo and at how this information can be possibly combined and utilized to enhance radar 
target classification performance.  

3.4 Nectar feeding bats and bat-pollinated plants 
Although several works have looked at how bats recognize moving targets, the literature shows a lack of 
knowledge on how these mammals perform classification of static targets. Nectar feeding bats play an 
important role in the process of pollination of plants, which, with their flowers, represent a very interesting 
class of organisms for the study of target classification. Firstly, flowers are motionless and silent so that 
bats cannot rely on Doppler information or passive echolocation based on target sounds, and secondly 
their habitat is often a densely cluttered environment. Finding and approaching a flower is a gradual 
process that involves all the bats' senses. While bats can only use vision at dusk, they can rely on their 
sense of smell and on echolocation to search for flowers in darkness. Nectar feeding bats have a highly 
developed sense of smell and they are highly attracted by the scent of sulphur-compounds which are 
produced by many bat-pollinated plants [Helv00].  Although the sense of smell certainly plays an 
important role, and in particular for long range attraction, latest research results support the fact that nectar 
feeding bats largely rely on echolocation to plan their approach flight and to detect and select the flowers 
in the proximity of the plant. Indeed, it has been shown that bats are capable to detect and select objects by 
echolocation only. 

The flowers of the bat-pollinated vine Mucuna holtonii plant release the greatest amount of nectar reward 
only on the first visit by the bat. By landing into the flower corolla the bat ignites the explosion of the 
flower's vexillum which functions as a trigger for the pollen and the nectar release. Behavioral 
experiments have shown that bats can successfully select unvisited flowers within an inflorescence in 
darkness and this is a task that can only be done by echolocation. The scent of the flower, in fact, remains 
unchanged before and after the explosion. It has also been shown that modifying the echo-acoustic 
properties of these flowers, by inserting a small pad of cotton in cavity of the vexillum (i.e. without 
altering the scent and visual aspect of the flower) results in a drop of the success rate of the bat [Helv99] 
[Helv03a]. A few individuals of Glossophaga soricina bats were successfully trained to discriminate 
between an unscented hollow hemisphere and an unscented paraboloid, irrespective of size and in 
darkness, to show that bats have the ability to generalize object shapes by echolocation [Helv04]. In 
another experiments, bats were able to discriminate between unscented hollow hemispheres of different 
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sizes in darkness [Simon06].  These experiments clearly suggest that echolocation alone plays a key role 
for the task of recognition.  

Choosing the most suitable flowers to be visited within a inflorescence is a task for which echolocation 
certainly plays a fundamental role and, although classification of flowers in such environment is 
demanding, nectar-feeding bats succeed in their pollination task. Because it is in the interest of both the 
plant and the bat that pollination takes plays it is widely hypothesized that co-evolution has shaped bat-
pollinated flowers in order to ease classification by bats [Helv03b]. Investigating if there are and which are 
the features of these flowers that aid the bat search for nectar is under investigation and it is key to 
understanding the strategy underpinning the task of classification of flowers by bats. This may well offer 
an interesting insight to radar and sonar engineers working on target classification and recognition as well. 
There are a number of similarities with the radar/sonar case. In the previous section we have seen that the 
type of waveforms deployed by bats are similar to linear and hyperbolic chirps commonly used by 
synthetic systems. Also the number of range cells covering a flower, i.e. the ratio between the flower size 
and the range resolution achievable by bats, assumes similar values to its counterpart in common 
radar/sonar applications. 

3.5 Classification of flowers 
Here, we analyse a set of data containing high range resolution profiles (HRRP) of two Cobaea scandens 
flowers taken at different stage of maturity and then manually modified. A photo of a C. scandens is given 
in Figure 15.  

Classification performance of a k-NN classifier trained to distinguish between these flowers is assessed in 
order to investigate and quantify if the information contained in their echo acoustic signatures can be used 
to perform recognition with particular emphasis to differences in echoes due to the flower wilting process 
and to the manual removal of the flower petals.  

3.5.1 Data collection 

The data consists of high range resolution profiles (HRRP) of a few individuals flowers of Cobaea 
scandens. These were collected at the School of Biological Sciences of the University of Bristol in 
October 2008. The flowers to be ensonified were impaled on a thin pin that was placed at the centre of a 
turntable rotating with an angular resolution of 1°. A linear down-chirp spanning the frequencies between 
50 kHz and 250 kHz, in order to cover the range of frequencies used by nectar feeding bats, was 
transmitted towards the flower with a custom-built loudspeaker [Strei03]. The echo, recorded with an 
ultrasound microphone (G.R.A.S. type 40 BF), was sampled at a rate of 500 kHz using a National 
Instruments PCIe-6251 card. During the experiments, both the loudspeaker and the microphone were 
placed into a custom built artificial bat head, capable of hosting one loudspeaker and two microphones in 
order to reproduce the spatial arrangement of the two ears and the mouth of the bat. The setup allowed 
measurements with a range resolution of about 1.5 mm. Three different horizontal images were recorded, 
each one representing HRRP of a C. scandens in three different cases; a flower in ideal condition for 
pollination, a desiccated flower, and a flower whose petals were removed by hand. The raw data was 
processed offline using Matlab. 

3.5.2 Data pre-processing and results 

The mean value was removed from each measurement , where )(ns j j  indicates the  angular 

perspective and represents the discrete time index. The analytic signal of  defined as 

thj
)n )(njŝ (ns j

{ })(Re)(ˆ nsns jj =  was computed with the hilbert.m Matlab function and matched filter with Matlab to 

the analytic signal of a copy of the transmitted chirp. The output of the matched filter  represents )(nz j
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the HRRP corresponding to the  angular perspective. The background static clutter was removed by 
removing the mean value from each range bin, i.e. by removing the zero Doppler component in the 
frequency-range plot/ 

thj
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For each angular perspective the target HRRP  was formed with the element of 

 corresponding to the range bins from 18 cm to 32 cm, i.e. those range bins 
that contained the echo from the targets. Similarly a noise profile  was formed with the elements of 

corresponding to the range bins that contained noise only. 
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The images showing the magnitude of the HRRPs for each angular perspective are given in Figure 16, 
Figure 17 and Figure 18. These are related to the angular perspectives ranging between -90 and +90 
degrees, where the 0 degree line corresponds to the case when the flower was facing the microphone and 
the loudspeaker. The images were normalised to the same value in order to allow a fair comparison.  The 
magnitude of the HRRPs  of the individual of C. scandens that was ready for pollination, given in Figure 
16 exhibits strong reflections at a distance of between 21 cm and 23 cm from the microphone that are 
originating from the petals of the corolla, and weaker reflections between 20 cm and 21 cm are originated 
from the anthers protruding from the corolla. An overall weaker scattering originates from the bell-shaped 
inner part of the flower's corolla between 25 cm and 27 cm. This is the part of the corolla that contains 
nectar and from which the pistil grows. Weaker scattering due to the echo generated by the ring of sepals 
that cover the external back side of the flower is also visible from about 28.5 cm to 29.5 cm. It is 
interesting to observe how the petals can scatter a considerable amount of power over a wide range of 
angles that goes between -60 degrees and +60 degrees. Exploiting how the shape of the corolla can change 
as the flower wilts, i.e. stops producing nectar hence losing attractiveness to bats, could lead to understand 
which features are responsible for recognition. The HRRPs of the desiccated C. scandens that had started 
to wilt due to an overnight frost are displayed in Figure 17. The time plot shows that the scattering due to 
the petals between 21 cm and 23 cm is less complex with respect to that in Figure 16. A wide scattering 
that goes between −60 degrees and 0 degrees is still present at about 22 cm and probably due to one petal 
that was still in good condition at the time of the measurement. However, most of the scattering from the 
petals is no longer visible, leading to a marked loss of information. This is because the petals tend to fold 
back during the wilting process and the mirror effect that is generating when they are in the upright 
position diminishes. The loss in turgor might also affect reflective properties of the plant tissue. The 
scattering from inside the corolla does not show any loss of complexity but it is weaker than before with 
respect to the maximum value of the image. To investigate what the image of the flower would be without 
petals at the corolla, the front ends of the petals from the same individual were removed manually using a 
pair of scissors. Figure 18 shows the HRRPs image obtained from this modified flower. The scattering 
from the petals disappears over all angles. A fraction of power is still scattered at 0 degrees probably 
originated by some residuals of petals that might have not been removed properly or simply by the line 
delimiting the aperture of the corolla. The fact that the image is very similar to the one obtained from the 
wilting flower suggests that the scattering form the petals tends to disappear when the flower is no longer 
suitable for pollination. Scattering from the inside of the flower is now more visible as compared to Figure 
17 but no relevant change in the complexity of the echo is to be reported. 

One cue available to bats is the overall power of the echo. The mean power of the noise was estimated 
from the noise profiles and similarly the mean power of the range bin containing target plus noise was 

estimated from all perspectives . The results show differences in reflected power of more than 3 dB 
between the good flower and the other two that are within the sensitivity shown by bats and therefore 
could be used by bats to perform discrimination.  

jn
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Differences in the echo acoustic structure were quantified by means of a k-NN classifier trained with 
HRRPs extracted from each image with an angular step of 3° to 5°.  The remaining HRRPs for each image 
were used to test the classifier. For each HRRP the Principal Components were extracted with the 
Principal Component Analysis algorithm as described in the previous Chapter. The maximum value of the 
cross-covariance was used as a measure to identify the k  nearest neighbours to each test. The profile was 
assigned to the class owning the highest number of neighbours between the k  selected. When the  k-NN 
classifier was set to make a decision with 3=k  nearest neighbours  77% correct classification was 
achieved. This was obtained with an angular separation between consecutive training profiles equal to 3°  
degrees corresponding to a total number of 60 training profiles and 120 test profiles. Dimensionality 
reduction was performed through the PCA algorithms by selecting the principal 20 features for each 
profile. Classification performance improved significantly up to values over 90% correct classification 
when the classifier was trained with profiles separated by 2° and similarly performance dropped to 68% 
when the decisions were made on  neighbours whilst keeping the angular separation between the 
training profiles equal to 3 degrees. Results suggest that high level classification performance can be 
achieved and  highlight how  important it is to account for the cross-correlation properties between 
different angular perspectives in each target. 

5=k

Overall results show that high level classification performance can be achieved. They support the 
hypothesis that the echo acoustic signatures of bat-pollinated flowers contain information that changes 
together with the stage of maturity of the flower and that can be used to achieve high level classification 
performance.  In particular scattering from the petals and the way this changes as a function of the state of 
the flower could be a way of letting bats know which flower is most suitable for pollination, i.e. holds a 
nectar reward, and hence play an important role for recognition and selection of the flowers. The results of 
the power reflectivity analysis show that differences in the backscattered power can also be used to aid 
recognition as these are in the detectable range shown by bats. 

 

4.0 ACOUSTIC MICRO-DOPPLER 

The echo produced by a moving target that is illuminated by a radar or ensonified by a sonar system 
contains frequency modulations caused by the time varying delay occurring between the target and the 
sensor. The main bulk translation of the target towards or away from the sensor induces a frequency or 
Doppler shift of the echo as a result of the well known Doppler effect [Gil65]. Additional movements of 
small parts of the target contribute with frequency modulations around the main Doppler shift and these 
are commonly called micro-Doppler modulations. Micro-Doppler modulations contain a signature of the 
target that can be used for target recognition.  

Classification of targets by micro-Doppler signatures has been widely investigated for the Radio 
Frequency (RF) regime and in particular for applications related to radar systems. V.C. Chen et al have 
modelled the radar micro-Doppler phenomenon and simulated micro-Doppler signatures for various 
targets, such as rotating cylinders, vibrating scatterers and personnel targets [Che03] [Che06] [Che00]. 
The authors also show that a time-frequency analysis of the radar return can be used to extract micro-
Doppler signatures from the received signal, leading to additional information on the target that can be 
used for classification and recognition. An easy way to perceive target micro-Doppler modulations is to 
listen to an appropriate audible version of the radar return. Indeed, this method has been used to perform 
classification of targets but it has the disadvantage of requiring the presence of a human operators. For 
these reasons, the most recent challenge that has to be addressed is to develop micro-Doppler 
classification methods that allow Automatic Target Recognition (ATR). Various studies have looked at 
classifying targets automatically through the analysis of their micro-Doppler signatures. For example, 
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classification by micro-Doppler signatures of a tracked vehicle, a wheeled vehicle and a personnel target 
was performed in [Smi06a] [Smi062b] [Smi08]. Here, classification performance was analysed via a K-
Nearest Neighbourhood classifier and a Naive Bayesian classifier by testing the main features of the 
micro-Doppler signatures that were extracted with both the Principal Component Analysis and the 
dynamic time warping algorithms. The use of micro-Doppler signatures for biometric purposes, and more 
specifically to identify humans, has been at the centre of a number of works in the last few years. In 
particular, there has been attempts to relate specific components of micro-Doppler gait signatures to parts 
of the body for identification purposes [Tah09]. In [Tiv10] a technique introduced for visual pattern 
recognition is applied to human gait signatures to distinguish between different human motions. The 
exploitation of micro-Doppler information for classification has been recently extended to the field of 
radar imaging and in particular to ISAR  [Vig09] [Gha08][Che09] and there has also been an attempt to 
exploit signatures of moving personnel targets through multi-static radar measurements [Sam10]. 
Although target classification by micro-Doppler signatures has been widely exploited in the RF regime 
there has been rather little research done on the same topic in the acoustic regime. An acoustic Doppler 
sensor operating at 40 kHz was developed in 2007 to characterise a person's gait with the final goal to 
perform human recognition [Kal07]. The system was deployed to measure Doppler signatures of men and 
women walking towards and away from the sensor which were used to assess classification performance 
of a Bayesian classifier. An additional active acoustic sensing system, still operating at 40 kHz, was 
developed at Johns Hopkins University [Zha07] [Zha07b]. The system was used to gather micro-Doppler 
signatures of humans and four-legged animals that were used to perform target classification [Zha08]. It is 
desirable for an active surveillance system to operate indiscreetly, ideally be undetectable at all times and 
have minimal impact on the environmental surroundings including on any animals other than humans. 
This requires an acoustic radar to operate at frequencies outside the hearing sensitivity of, at least, most 
common non-human targets. Although humans can hear up to about 20 kHz, common pets' hearing system 
is sensitive up to much higher frequencies; dogs for example can hear up to about 40 kHz and cats can 
hear up to 60 kHz. For these reasons, it may be an operational requirement that an acoustic radar operates 
at frequencies above 40 kHz. The use of higher frequencies leads to an additional advantage; as the 
Doppler shift is directly proportional to the carrier frequency, given a certain frequency resolution, at 
higher frequencies small movements induce a wider frequency shift and therefore a clearer contribution to 
the micro-Doppler signature. On the other hand, the increased acoustic attenuation at higher frequencies 
lowers the operational range of the system. Here, a fully-coherent acoustic radar operating at 80 kHz is 
described together with a set of experimental data, containing micro-Doppler signatures of personnel 
targets performing various actions. The data was collected at University College London between 2010 
and 2011. Classification performance of a K-Nearest Neighbourhood classifier and a Naive Bayesian 
classifier trained to distinguish between different human motions and different personnel targets are then 
presented.  

4.1 Description of the acoustic radar 
The acoustic radar developed at UCL is composed of a signal generator, a loudspeaker, a microphone, two 
pre-amplifiers that amplify the signals before transmission and after recording and a Data AcQuisition 
(DAQ) card that digitizes the recorded signal. The waveforms are generated by a National Instrument NI 
PXI-6733 card capable of generating up to 500 MSamples/sec  (32 bit resolution) per channel. Each card 
can transmit on 8 channels and therefore 8 different waveforms could potentially be transmitted 
simultaneously. The generated waveform is given as in input to the preamplifier (Ultra Sound Advice 
S55A) capable of generating a maximum output of 140 V peak to peak. The loudspeaker provides a 
monitor output which is 1/100 of the actual output of the amplifier. This allows monitoring of the output 
and of the gain of the amplifier. The signal is transmitted by a loudspeaker (Ultra Sound Advice) which 
can nominally operate between 20 kHz and over 200 kHz. It can generate an output level greater than 105 
dB S.P.L. (Sound Pressure Level) between 20 kHz and 50 kHz (measured at 0.25 m) and greater than 85 
dB S.P.L. up to 150 kHz. The round-shaped active area of the loudspeaker has got a 50 mm diameter. In 
the receive section, echoes are captured by a microphone capsule (Ultra Sound Advice UM3 capsule). The 
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sensitive element of the capsule is a 1.8 cm diameter disk made of a very thin aluminised polyester film. 
Nominally, its sensitivity is better than -57 dB from 20 kHz to 120 kHz and better than -70 dB at 180 kHz. 
The maximum gain obtainable by the amplifier is nominally x220 at 100 kHz. The amplified received 
signal is digitised by a DAQ card (NI PXI-6133) which is capable of receiving 8 channels simultaneously 
with a sampling frequency up to 500 kHz per channel. The digitised data is stored in a file and the signal 
processing is performed off line with Matlab. The data containing micro-Doppler signatures were gathered 
at UCL between 2010 and 2011. The microphone and the loudspeaker were arranged in a pseudo mono-
static configuration next to each other as shown in Figure 19. 

4.2 Description of the experiments 
Their active areas were contained on the same plane perpendicularly to the ground floor with their phase 
centres  positioned 12 cm far from each other and both at a height of 105 cm with respect to the ground 
floor. During the experiments the personnel targets were facing the microphone and the loudspeaker at a 
distance of 2 m. A 10 s long CW tone at 80 kHz with 0.3 V amplitude was generated with the NI PXI-
6733 card to ensonify the targets. The gain of the loudspeaker pre-amplifier, that was measured by using 
the monitor output, was about 20 dB. Echoes were recorded with the microphone and then sampled at a 
rate of 500 kHz. Micro Doppler signatures were gathered for three different personnel targets undertaking 
various actions: 

• walking 

• running 

• walking while carrying an object in one hand 

• walking while carrying an object with both hands 

• walking with a heavy backpack on the shoulders 

• shadow boxing 

• picking up an object form the floor 

• oscillating with the torso while standing on the spot 

The physical characteristic of the targets are given in Figure 20. 

When walking or running the targets were moving on a Pro Fitness manual treadmill and were ensonified 
from the back to avoid any masking effects. This was deployed to remove the main Doppler shift 
contribution from the Doppler signatures, and to keep the Signal-to-Noise ratio of the received signal as 
constant as possible during the recording. Also the treadmill removed any movement constraint on the 
targets and therefore allowed longer recordings.  

4.3 Data pre-processing 
 
A recording of the background clutter was removed from the raw data for each target recording. The 
analytic signal of the difference signal was mixed with the complex conjugate of the analytic signal of the 
transmitted tone to obtain the baseband signal containing the micro-Doppler signatures. The analytic 
signals were obtained by applying the Matlab Hilbert.m function to the original real signals. The mixer 
output was filtered with an ideal low pass filter cutting off all the frequencies over 2.5 kHz. It was 
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experimentally observed, in fact, that the micro-Doppler signatures were contained within the frequencies 
below 2.5 kHz. The resulting signal was down-sampled of a factor 50 leading to a final sampling 
frequency of 10 kHz. This was done to reduce the load of the data without altering the information 
contained in the frequencies below 2.5 kHz. The Short Time Fourier transform was applied to all the 
recordings to visualise the recorded micro-Doppler signatures. This was calculated by using 30 msec long 
50% overlapping windows weighted with a Hanning function and by computing their respective Fourier 
transform as described in Section II. The measured micro-Doppler signatures for one of the two targets 
taking all the action listed above are given in Figure 21 to Figure 22. 

4.4 Classification Performance Results 
The baseband data obtained after pre-processing containing the micro-Doppler signatures were used to 
assess and compare the performance of a Bayesian classifier and a K-Nearest Neighborhood classifier. In 
particular, our main focus was to distinguish between different personnel targets undertaking the same 
action or between different actions undertaken by the same target. The time sequences corresponding to 
each class were divided in 50% overlapping windows of duration . The analysis was repeated for three 
different window durations;  msec, 

wT
30=wT 100=wT  msec, 150=wT msec.  This resulted in a total 

number  of windows for each class. The content of each window was organised in column vectors  

where 
wN i

jx

j  indicates the  window belonging to the  class.  The first  windows for each class, 
corresponding to the first 1.5 sec of the recorded signal, were used to train the classifiers, so that the 
information used for training remained the same in all three cases. 

thj thi TrainN

The Principal Component Analysis (PCA), Cepstrum and MEL Cepstrum algorithms were used to extract 
 features from each window to reduce the dimensionality of the data and reduce the computational 

load of the classifiers [Duda] [Theo]. 
fN

Table 4shows the classification performance that was obtained from the comparison between the walking 
gait of Target A and Target C for  ms. This is divided in a sub-table per classifier, each one 
containing the three confusion matrices related to the three feature extraction algorithms that were used. 
This allows a straightforward comparison of the results obtained with different feature extraction 
algorithms given a specific classifier. In each confusion matrix, the percentage number is the ratio between 
the number of assignments and the total number of windows under test, given the same class. The 
averaged Probability of Correct Classification ( ) is given below each confusion matrix. This was 
calculated under the assumption each class had the same a priori probability. The parameter k of the k-
NN classifier was set equal to 3. Results show that high level classification performance can be obtained. 
In particular, for this case, the combination PCA plus Naive Bayesian classifier leads to a rate of correct 
classification over 90%. The lowest rate, instead, is given by the PCA followed by the k-NN classifier 
presenting a high number of wrong decisions when Target A is given. Overall, in all other cases, correct 
classification performance is above 80%. 

30=wT

ccP

Figure 23 shows the magnitude of the first two Mel-Cepstrum 
features of each class, in the 2D plane, giving a visual idea of the degree of separability between the two 
classes [Theo]. 

The confusion matrices obtained from the comparison of the walking gaits of all three targets, for 
ms, is given in 30=wT Table 5. The parameter  of  the k-NN classifier was set to 5 and all cases that 

could not univocally be assigned to any of the three classes were treated as unknowns and counted to 
average performance. Classification performance drops for both the classifiers and all feature extraction 
algorithms, all presenting a high rate of wrong decisions between Target B and Target C. The highest rate 
of correct classification is achieved by the PCA algorithm followed by the Naive Bayesian classifier and 

k
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this is equal to 64%. The drop in performance may be due to differences in the gait of Target B and Target 
C that cannot be resolved by the feature extraction algorithms. This appears clear by looking at Figure 24 
where the magnitude of the first two Mel-Cepstrum features of each class are plot versus each other on the 
2D plane. A substantial overlapping between the features related to Target B and those related to Target C 
can be observed. Classification performance improves when the duration of the windows increases. Table 
6 reports the results for the same case but with the window duration set to  msec.  The 
probability of correct classification on the average improves of 20% up to a correct rate of 71% given by 
the combination of the PCA algorithm followed by the Naive Bayesian classifier. The plot of the 
magnitude of the first two Mel-Cepstrum features, given in 

150=wT

Figure 25, shows a higher degree of 
separability between the three classes that clearly leads to the improvement in performance. The same 
behaviour is observed for all feature extraction algorithms.  

Table 7 reports the results obtained when the classifiers were trained to distinguish between the same 
personnel target, Target B, undertaking two different actions for 30=wT ms. In particular results are 
related to the comparison between Walking Normally (Class B-WN}) and Walking with a BackPack 
(Class B-WBP). The parameter of the k-NN classifier was set to 3. Results show that it is possible to 
achieve correct classification performance over 80%. The highest level of performance is achieved by the 
PCA algorithms and the Mel-Cepstrum algorithm for the Naive Bayesian classifier. 

k

Figure 26 shows the 
magnitude of the first two Mel-Cepstrum features for each class in the 2D plane.  

Overall performance varies depending on the target and the type of actions under test. In particular, as 
expected, results corroborate that the closest the classes under test the highest the drop in performance. 
Classification of a target walking normally versus the same target walking with an object in a hand proved 
to be highly challenging and showed, on the average, a drop of the performance to about 60% for 30=wT  
ms. On the average classification performance tends to increase as the window duration  becomes 
longer.  

wT

The impact that using longer time durations has on classification performance is currently under 
investigation.  Longer window durations allow a better characterisation of the micro-Doppler signature, 
for example by looking at how the Cepstral coefficients vary as a function of time, and allow extraction of 
additional features, such as the signature period and maximum bandwidth, that otherwise would not be 
available. Clearly there is the disadvantage of a longer time gaps between decisions, which can be an issue 
for some applications. Preliminary results obtained on the same dataset show that there is a consistent 
improvement in classification performance when the signatures are tested in blocks of 2.5 sec. Table 8 
show classification performance of a maximum likelihood classifier that uses a Gaussian mixture 
distribution to model the data and that was trained to distinguish between a set of 5 different actions 
performed by various targets.  Results show that a rate of correct classification higher than 90%. A further 
analysis is required to corroborate these results.  

4.5 Summary 
An acoustic radar operating at 80 kHz was developed for collection of micro Doppler signatures of 
moving targets, doubling the frequency used in previous works. The acoustic radar was deployed in a set 
of experimental trials in which micro-Doppler signatures of various personnel targets undertaking a 
number of action were collected in a highly indoor cluttered environment. These were used to test a K-NN 
and a Naive Bayesian classifiers trained to distinguish between walking gaits of different targets or 
between different action undertaken by the same targets. Results show that the acoustic radar can be 
successfully deployed at short ranges to collect micro-Doppler signatures of moving targets. Classification 
performance results show that the information contained in these acoustic signatures can be used to 
perform identification and recognition of personnel targets. Data has been gathered and analysed for a 
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range of personnel target motions and good levels of classification have been achieved. Although the 
acoustic radar can only survey short ranges due to the high attenuation of sound waves in air, it can be 
successfully deployed in indoor environments, such as airports, to monitor, for example, the flow of 
passengers through doors or security checks with the potential to identify suspicious behavior. In addition 
to this, the acoustic radar offers an easy and inexpensive way to collect micro-Doppler signatures of a 
wide range of targets, often difficult to obtain, that can be used to analyse human walking gaits or other 
type of behaviour in a number of applications. Future work will look at understanding how additional 
features such as geometrical features (i.e. the signature period or the signatures maximum Doppler shift) 
or how the history of the current features (i.e. the time variation of the Cepstrum or MEL-Cepstrum 
coefficients) can be deployed to enhance classification performance. Extending the work presented in this 
paper to the underwater regime is also under consideration. 
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Figure 1: ISAR geometry: two stationary corner reflectors are in front and behind the turntable, while two 

rotating ones are placed on the turntable.  
 

 
Figure 2: History of HRRPs (30 cm range resolution) from four corner reflectors, two rotating and two 

stationary. 
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Figure 3: History of HRRPs (8 cm range resolution) from a series of X-band stepped frequency chirps 

illuminating a ground vehicle as it rotates over 360 degrees with the turntable. 

 
Figure 4: Classification accuracy versus number of Principal Components obtained with the PCA algorithm. 

RTO-EN-SET-172(2012) 4a - 25 

 



MULTI-PERSPECTIVE AND BIOLOGICALLY-INSPIRED NCTR  

 

 
Figure 5: Multi-perspective environment approximation. 

 
Figure 6: Correct classification rates of three classifiers using different numbers of perspectives 
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Figure 7: Correct classification rates for an M-P FANNs classifier with different SNR test sets. 

 

Figure 8: Trajectory of a bat (blue) with respect to a static insect (red) in a similar experiment performed at 
the University of Maryland (taken from http://www.bsos.umd.edu/psyc/batlab/). 
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Figure 9: Feeding buzz of an Epetesicus nilssoni bat. 
 
 
 
 
 
 

 

 

Figure 10: Spectrogram, mean spectrum and ambiguity function with relative range and Doppler cuts for the 
first pulse in the searching phase. 
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Figure 11: Spectrogram, mean spectrum and ambiguity function with relative range and Doppler cuts for a 
pulse in the terminal phase. 
 
 

 

Figure 12: Example of a multi-harmonic CF signal with initial and final sweep. 
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Figure 13: Amplitude-modulated echoes from a flying Autographa gamma at three different angles with 
equidistant phases of 2 wing beat cycles and their corresponding wingbeat phases. At 90 degrees the glint is 
produced at the top of the stroke, i.e. when the moth wings are perpendicular to the sound source. At 0 degree 
(frontal) and 180 degrees (rear), the glint occurs two phases after the upstroke suggesting that, in both cases, 
the same part of the wings produces the glint. Taken from [Sch83]. 
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Figure 14: Echoes from four insect species all fluttering at 50 Hz but with different spectral patterns in echoes 
from their wing beats. For each insect, the upper trace represent the spectrogram of the echo and the lower 

trace the time oscillation. Taken from [Emde90]. 
 
 
 

 

Figure 15: Photo of a desiccated Cobaea scandens flower with protruding anthers, a bell-shaped corolla of 
largely merged petals whose unmerged petal ends fold back, and a ring of partly merged sepals at its base. 
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Figure 16:  Magnitude of HRRPs over 180 degrees for a  C. scandens ready for pollination. 0 degrees is to the 
front of the flower. HRRPs direction is horizontal, i.e. from left to right with respect to the flower's natural 

orientation. Scaled in relative [dB]. 

 
Figure 17: Magnitude of HRRPs over 180 degrees for a  desiccated C. scandens. 
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Figure 18: Magnitude of HRRPs over 180 degrees for a modified C. scandens. 

 

 

Figure 19: Frontal and lateral view of the space arrangement of the microphone and the loudspeaker during 
the experiment. 
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Figure 20: Physical characteristics of the three personnel targets, a female and two males, used for the 
experiments 

 

 

Figure 21: Micro-Doppler signature of Target A walking on a treadmill, facing the acoustic radar at a distance 
of 2 m. 
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Figure 22: Micro-Doppler signature of Target A running on a treadmill. 
 

 
Figure 23: Plot of the first two Mel-Cepstrum features in the 2D plane for Target A (red) and Target C (blue). 
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Figure 24: Plot of the first two Mel-Cepstrum features in the 2D plane for Target A (red), Target B (green) and 

Target C (blue). 
 

 
Figure 25: Plot of the first two Mel-Cepstrum features in the 2D plane for Target A (red), Target B (green) and 

Target C (blue). 
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Figure 26: Plot of the first two Mel-Cepstrum features in the 2D plane for Target B walking normally (Class 

B-WN, green) and Target B walking with a heavy backpack on the shoulders (Class B-WBP, brown). 
 

 
Table 1 ADAS single chirp parameters. 
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Table 2 Multi-perspective confusion matrices for three classifiers (K-NN, Naive Bayesian and FANNs) using 
different numbers of perspectives. 
 

 
Table 3 Multi-perspective correct classification rates (CCR) for the three classifiers using a progressive 

number of perspectives. 
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Table 4 Total number of training windows  and test windows  used to assess the performance of 

the classifier for each window duration . 
TrainN TestN

wT
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Table 5 Confusion matrices reporting the performance of the Naive Bayesian classifier and the K-NN 

classifier ( ) testing the walking gait of Target A and that of Target C for all feature extraction algorithms 3=k
30=wT ms). 
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Table 6 Confusion matrices reporting the performance of the Naive Bayesian classifier and the K-NN 
classifier  testing the walking gait of Target A, Target B and Target C for all feature extraction 

algorithms (
5=k

30=wT  ms). 
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Table 7 Confusion matrices reporting the performance of the Naive Bayesian classifier and the K-NN 
classifier ( ) testing the walking gait of Target A, Target B and Target C for all feature extraction 

algorithms (
5=k

150=wT  ms) 
 

 Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 96.9% 0 0 1% 2.1% 

Class 2 3.2%  88.9% 4.8% 0% 3.2% 

Class 3 0% 3.2% 93.6% 0% 3.2% 

Class 4 1.7% 0% 0% 98.3% 0% 

Class 5 0% 0% 0% 0% 100% 

Table 8 Classification performance of a maximum likelihood classifier using Gaussian mixture models and 
trained to distinguish between various personnel targets; walking normally (Class 1), walking with an object 
in one hand (Class 2), walking with an object in two hands (Class 3), running (Class 4) and walking with a 
backsack (Class 5).  

 


